Math 270: Differential Equations Day 9 Part 2

<u>Section 4.2</u>: Solving Second-Order Linear Homogeneous DEs Where The Auxiliary Equation Has Only Real Roots

<u>Ex</u>: Find a solution to ay'' + by' + cy = 0 of the form $y = e^{rx}$

Conclusion:

- 1) If r_1 is a root of the auxiliary equation $ar^2 + br + c = 0$, then $y=e^{r_1x}$ is a solution to ay'' + by' + cy = 0
- 2) If r_1 and r_2 are two distinct real roots of the auxiliary equation $ar^2 + br + c = 0$, then $y=e^{r_1x}$ and $y=e^{r_2x}$ are 2 independent solutions to ay'' + by' + cy = 0 and hence $y=Ae^{r_1x} + Be^{r_2x}$ is the general solution

<u>Ex 1</u>: Find the general solution to y'' - 3y' - 10y = 0

<u>Ex 2</u>: Find the general solution to 3y'' - 5y' + y = 0

<u>Ex</u>: Find a solution to ay'' + by' + cy = 0 of the form $y = e^{rx}$

Conclusion:

- 1) If r_1 is a root of the auxiliary equation $ar^2 + br + c = 0$, then $y=e^{r_1x}$ is a solution to ay'' + by' + cy = 0
- 2) If r_1 and r_2 are two distinct real roots of the auxiliary equation $ar^2 + br + c = 0$, then $y=e^{r_1x}$ and $y=e^{r_2x}$ are 2 independent solutions to ay'' + by' + cy = 0 and hence $y=Ae^{r_1x} + Be^{r_2x}$ is the general solution

Question: What if *r* is a repeated root?

<u>Ex</u>: Show that if r_1 is a root of the auxiliary equation $ar^2 + br + c = 0$ of multiplicity 2, then $y = e^{r_1 x}$ and $y = xe^{r_1 x}$ are 2 independent solutions of ay'' + by' + cy = 0

To Solve A Second-Order Linear Homogeneous DE With Constant Coefficients Where The Auxiliary Equation Has Only Real Roots: Solving ay'' + by' + cy = 0

1) Find the roots of the auxiliary equation $ar^2 + br + c = 0$

- 2) If r_1 and r_2 are two distinct real roots of the auxiliary equation $ar^2 + br + c = 0$, then $y=e^{r_1x}$ and $y=e^{r_2x}$ are 2 independent solutions to ay'' + by' + cy = 0 and hence $y=Ae^{r_1x} + Be^{r_2x}$ is the general solution
- 3) If r_1 is a real root of multiplicity 2 of the auxiliary equation, then $y=e^{r_1x}$ and $y=xe^{r_1x}$ are 2 independent solutions to ay'' + by' + cy = 0 and hence $y=Ae^{r_1x} + Bxe^{r_1x}$ is the general solution

Ex 3: Find the solution to the IVP y'' + 6y' + 9y = 0, y(0) = 1, y'(0) = 3

<u>Ex 4</u>:

The auxiliary equation for $y^{(6)} + 4y^{(5)} - 50y^{(4)} - 20y^{(3)} + 256y'' + 376y' + 144y = 0$ is $r^6 + 4r^5 - 50r^4 - 20r^3 + 256r^2 + 376r + 144 = 0$ or $(r+1)^3(r-4)^2(r+9) = 0$ Find the general solution to this DE.

Ex 5 (Book Section 4.2 ex 4): Find the general solution to y''' + 3y'' - y' - 3y = 0